
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin 
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2014-19378 C 

Obtaining	Threading	Performance	Portability	in	
SPARTA	using	Kokkos	

Stan	Moore	
DOE	COE	Performance	Portability	Mee@ng	
April	20,	2016	



SPARTA	

(Stochas@c	PArallel	Rarefied-gas	Time-accurate	Analyzer)	
§  Direct	Simula@on	Monte	Carlo	(DSMC)	code	
§  Models	rarefied	gas	flows	using	par@cles	
§  Features	in	situ	meshing	and	visualiza@on	
§  Core	developers	are	Steve	Plimpton	and	Michael	Gallis	(Sandia)	
§  Open-source,	hQp://sparta.sandia.gov	

2	



SPARTA	(cont.)	

§  Rela@vely	new	code—first	public	release	in	July	2014	
§  WriQen	using	object-oriented	C++	(~45,000	lines)	
§  Parallelized	using	MPI	and	domain	decomposi@on	
§  Easily	extensible	using	C++	virtual	inheritance—reduces	code	

duplica@on	
§  No	third-party	libraries	

3	



Kokkos	

(Greek	for	kernel	or	grain)	
§  Provides	abstrac@ons	(in	C++)	for	both	parallel	execu@on	of	

code	and	data	management	
§  Designed	to	target	complex	node	architectures	with	N-level	

memory	hierarchies	and	mul@ple	types	of	execu@on	
resources	

§  Currently	can	use	OpenMP,	Pthreads,	and	CUDA	as	backend	
programming	models	

§  Core	developers	are	Carter	Edwards	and	Chris@an	TroQ	
(Sandia)	

§  Open-source,	hQps://github.com/kokkos/kokkos	

4	



Kokkos	(cont.)	

§  In	prac@ce,	Kokkos	allows	SPARTA	to:	
§  Use	threading	on	top	of	exis@ng	MPI	paralleliza@on	(MPI	+	X)	
§  Run	and	give	reasonable	performance	on	mul@threaded	CPUs,	Xeon	

Phis,	and	GPUs	

§  Kokkos	abstrac@ons	only	require	a	single	C++	code	base	

5	



Ini@al	Por@ng	Strategy	

§  Leverage	(reuse)	the	original	SPARTA	code	instead	of	a	
complete	rewrite	

§  Keep	the	Kokkos	version	as	similar	to	the	original	MPI	code	as	
possible	

§  Ini@ally	parallelize	kernels	using	simple	parallel	loops	(no	
thread	teams)	

§  Find	and	op@mize	boQleneck	kernels,	adding	more	complexity	
to	the	Kokkos	code	if	necessary	(ongoing)	

	
“Premature	op4miza4on	is	the	root	of	all	evil”	–Donald	Knuth	

6	



Ini@al	Por@ng	Strategy	(cont.)	

§  Kokkos	package	is	an	op@onal	add-on	to	SPARTA	
§  Uses	C++	virtual	inheritance	and	func@ons	to	reduce	code	

duplica@on	
§  First	such	op@onal	package	in	SPARTA	
§  PaQerned	afer	the	LAMMPS	molecular	dynamics	code,	which	

has	61	op@onal	packages	(including	a	similar	Kokkos	package)	
§  So	far,	par@cle	moves	without	complex	surfaces	have	been	

ported,	along	with	the	collide	rou@ne	

7	



Kokkos	Por@ng	Workflow	

1.  Profile	code	to	find	boQlenecks	
2.  Iden@fy	a	kernel	to	be	threaded	(in	SPARTA:	typically	loops	

over	par@cles	or	grid	elements)	
3.  Change	kernel	data	structures	to	Kokkos	views	
4.  Change	kernel	loop	to	Kokkos	parallel	for,	reduce,	or	scan	
5.  Make	changes,	if	necessary,	to	ensure	the	kernel	is	thread-

safe	(modify	kernel	or	use	atomics)	
6.  Test	code	on	CPU/Xeon	Phi	
7.  Add	in	memory	transfer	between	host	and	device	
8.  Test	code	on	GPU	

8	



Incremental	Approach	

§  Kokkos	dual	views	contain	a	reference	to	data	in	device	(e.g.	
GPU)	memory	as	well	as	a	mirror	copy	on	the	host	(e.g.	CPU)	

§  Can	easily	sync	between	host	and	device	copies	
§  Non-Kokkos	code	runs	on	the	host	
§  SPARTA	uses	primi@ve	memory	alloca@on	(no	std::vector)	
§  Data	structures	are	allocated	using	Kokkos,	and	pointers	to	

the	data	structures	in	non-Kokkos	code	are	set	to	point	to	the	
Kokkos	host	view	

§  This	allows	non-Kokkos	por@ons	of	the	code	to	s@ll	run	with	
zero	or	liQle	modifica@on	(may	need	some	memory	transfer	
for	GPU)	

9	



Results	

§  Collisional	benchmark	with	10	million	par@cles	for	strong	
scaling		

§  Used	1	MPI	task	(1	Sandy	Bridge	CPU)	per	K20X	GPU	

10	



Challenges—Code	Maintenance	

§  Since	Kokkos	threading	package	is	an	op@onal	add-on	to	
SPARTA,	need	to	prevent	divergence	between	original	MPI	
and	Kokkos	code	versions	

§  Must	periodically	synchronize	changes	and	bug	fixes	
§  Regression	tes@ng	can	help	catch	changes	to	main	SPARTA	

that	break	the	Kokkos	package	
§  Without	Kokkos,	would	s@ll	need	a	CUDA	version	and	an	

OpenMP	version	of	SPARTA	

11	



Challenges—Specializa@on	

Case	study:	atomics	
§  Sta@s@cs,	such	as	number	of	collisions,	number	of	cell	

crossings,	etc.	are	collected	inside	thread	parallel	loops	
§  For	thread	safety,	can	either	use	a	parallel	reduc@on	over	

threads	or	an	atomic	fetch-and-add	to	global	variables		
§  On	K20X	GPU,	atomics	are	10%	faster	than	parallel	reduc@on	

(overall	for	a	collisional	benchmark	problem)	
§  On	BGQ,	atomics	are	7%	slower	than	parallel	reduc@on	
§  How	much	code	complexity	is	a	10%	gain	in	performance	

worth?	(However,	liQle	differences	add	up)	
§  Chosen	solu@on:	add	command	line	op@on	to	toggle	between	

parallel	reduc@on	and	atomics	
12	



Conclusions	

§  Using	Kokkos	in	SPARTA	gives	reasonable	threading	
performance	on	mul@ple	plaporms	

§  Kokkos	allows	one	to	leverage	exis@ng	C++	code—a	complete	
rewrite	isn’t	necessary	and	an	incremental	por@ng	approach	
is	possible	

§  Some	code	specializa@on	for	different	plaporms	will	probably	
always	be	necessary	to	gain	maximum	performance	

13	



Ques@ons?	

14	


